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1 Recall: Convex Optimization

P := inf
x∈K

f(x) subject to
gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , ℓ

(P )

where f, gi : Rn → R are convex differentiable functions while hj : Rn → R are affine
functions, i.e. hj(x) = AT

j x+ bj .

and the dual problem

D = sup
λ∈Rm

+

µ∈Rℓ

d(λ, µ), where d(λ, µ) := inf
x∈Rn

L(x, λ, µ)

where L(x, λ, µ) = f(x) +
m∑
i=1

λigi(x) +
ℓ∑

j=1

µjhj(x) and the feasible set

K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0}

KKT Theorem
Proposition 1. Assume that there exists x̄ such that Slater condition holds, i.e.{

gi(x̄) ≤ 0, i = 1, . . . ,m

hj(x̄) = 0, j = 1, . . . , ℓ
and {Aj : j = 1, . . . , ℓ} is linearly independent

Then Mangasarian-Fromovitz Qualification condition holds for all

x ∈ K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0}.

Corollary 2. Let x∗ ∈ K be an optimal solution to P and it satisfies the qualification condition
(Mangasarian-Fromovitz or Abadie). Then there exists λ∗ ∈ Rm

+ , µ
∗ ∈ Rℓ such that{∑

λ∗
i gi(x

∗) = 0

∇xL(x
∗, λ∗, µ∗) = 0

Theorem 3. Assume that the constraint K satisfies the qualification condition, and x∗ ∈ K. Then x∗

is an optimal solution to P iff (*) there exists (λ∗, µ∗) ∈ Rm
+ × Rℓ such that{∑

λ∗
i gi(x

∗) = 0

∇xL(x
∗, λ∗, µ∗) = 0
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Remarks. It is the necessary and sufficient condition for convex optimization. In general, this is a
necessary condition only.

Proof. 1. We already know that (∗) is necessary condition for the optimality of x∗ in the previous
lectures.

2. Assume that (∗) holds. Since x 7→ L(x, λ, µ) is convex, then

L(x∗, λ∗, µ∗) = min
x∈Rn

L(x, λ∗, µ∗) = d(λ∗, µ∗).

This is equivalent to for all y ∈ Rn, we have

L(y, λ∗, µ∗) ≥ L(x∗, λ∗, µ∗) = f(x∗) +
∑

λ∗
i gi(x

∗)︸ ︷︷ ︸
=0 (By (*))

+
∑

µjhj(x
∗)︸ ︷︷ ︸

=0

= f(x∗)

Moreover, for all y ∈ K,

L(y, λ∗, µ∗) = f(y) +
∑

λ∗
i gi(y) ≤ f(y)

Together with the above inequalities, we have

f(x∗) ≤ L(y, λ∗, µ∗) ≤ f(y), ∀y ∈ K

thus this implies that x∗ is an optimal solution to (P ).

2 Duality by KKT Theorem
Theorem 4. Assume that K satisfies the qualification condition, and that (P ) has at least one solu-
tion. Then

(i) P = D, and

(ii) there exists (λ∗, µ∗) ∈ Rm
+ × Rℓ such that D = d(λ∗, µ∗) and there exists x∗ such that

L(x∗, λ∗, µ∗) = d(λ∗, µ∗) and x∗ is solution to (P ).

Proof. 1. First, we have the Weak Duality: P ≥ D is always true.

2. Since (P ) has at least one solution. Let x∗ be a solution to (P ), then by KKT theorem, there
exists (λ∗, µ∗) such that {∑

λ∗
i gi(x

∗) = 0

∇xL(x
∗, λ∗, µ∗) = 0

By definition, we have D = sup
λ∈Rm

+

µ∈Rℓ

d(λ, µ) ≥ d(λ∗, µ∗) = inf
x∈Rn

L(x, λ∗, µ∗).

From the first order condition ∇xL(x
∗, λ∗, µ∗) = 0, we have inf

x∈Rn
L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗).

Putting all together, we have

D = sup
λ∈Rm

+

µ∈Rℓ

d(λ, µ) ≥ d(λ∗, µ∗) = inf
x∈Rn

L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗)

= f(x∗) +
∑

λ∗
i gi(x

∗)︸ ︷︷ ︸
=0

+
∑

µjhj(x
∗)︸ ︷︷ ︸

=0

= inf
x∈K

f(x) = P

Therefore, we have D = d(λ∗, µ∗) = L(x∗, λ∗, µ∗) = P .
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Remarks. From D = d(λ∗, µ∗), this implies that (λ∗, µ∗) is the dual optimizer.
From d(λ∗, µ∗) = L(x∗, λ∗, µ∗), this implies that x∗ is optimizer in d(λ∗, µ∗) and x∗ is optimizer for
(P ).

3 Exercises
Exercise 1. Solve the optimization problem

min
− log(x)−y≤0

y≥1

x+
1

2
y2.

Solution. Let f(x, y) = x+
1

2
y2. As there are two inequality constraints, so g1(x, y) = − log(x)− y

and g2(x, y) = 1 − y. Clearly, f is convex function. Since log(x) is a concave function, so − log(x)
is convex and hence g1(x, y), g2(x, y) are convex functions. Consider the feasible set K as

K := {(x, y) : y ≥ 1, − log(x) ≤ y} =
{
(x, y) : y ≥ 1, x ≥ e−y

}
Since f, g1, g2 are convex and f(·) is coercive function, so there exists minimizer x∗ ∈ K as a solution
to the problem. Define the Lagrangian function as

L(x, y, λ1, λ2) = x+
1

2
y2 − λ1 (log(x) + y) + λ2 (1− y)

and the dual function d(λ1, λ2) = inf
(x,y)

L(x, y, λ1, λ2). Now, we compute

∇(x,y)L(x, y, λ1, λ2) =

(
1− λ1

x
y − λ1 − λ2

)

By the Euler’s first order condition, by setting ∇(x,y) = 0, we have (x∗, y∗) = (λ1, λ1 + λ2).
So, we have

inf
(x,y)

L(x, y, λ1, λ2) = L(λ1, λ1 + λ2, λ1, λ2) = λ1 − λ1 log(λ1)−
1

2
(λ1 + λ2)

2 + λ2

Now, we compute

∇λd(λ) =

(
1− log(λ1)− 1− (λ1 + λ2)

−(λ1 + λ2) + 1

)

By setting equals to 0, we have

{
log(λ∗

1) + λ∗
1 + λ∗

2 = 0

λ∗
1 + λ∗

2 = 1
=⇒

{
λ∗
1 = e−1

λ∗
2 = 1− e−1

.

Therefore, we have D = sup
λ

d(λ1, λ2) = d(λ∗
1, λ

∗
2), where (λ∗

1, λ
∗
2) = (e−1, 1− e−1).

So, from the above, we have (x∗, y∗) = (λ∗
1, λ

∗
1 + λ∗

2) = (e−1, 1) so that

f(x∗, y∗) = e−1 +
1

2
= min

(x,y)∈K
f(x, y).

◀
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Exercise 2. Let ai > 0 for all i = 1, . . . , n and K :=

{
x ∈ Rn :

n∑
i=1

x2
i

a2i
≤ 1

}
. Solve

min
x∈K

∥x− u∥2

for a given u ∈ Rn satisfying
n∑

i=1

u2
i

a2i
> 1.

Remarks. K is an ellipsoid.

Solution. Let f(x) = ∥x− u∥2 and g(x) =
n∑

i=1

x2
i

a2i
− 1.

Then, the Lagrangian function is

L(x, λ) = ∥x− u∥2 + λ

(
n∑

i=1

x2
i

a2i
− 1

)
Note that

• f and g are convex

• d(λ) = inf
x∈Rn

L(x, λ)

Now, we compute

∇xL(x, λ) =


...

2(xi − ui) + 2λxi/a
2
i

...


By setting ∇xL(x, λ) = 0, we obtain xi =

ui

1 + λ/a2i
.

Putting back to d(λ), we have

d(λ) = inf
x∈Rn

L(x, λ) = L

(
ui

1 + λ/ai
, i = 1, . . . , n, λ

)
=

n∑
i=1

(
1− 1

1 + λ/ai
− 1

)2

u2
i + λ

(
n∑

i=1

(
1

1 + λ/a2i

)2

· 1

a2i
− 1

)

= −λ+ λ
n∑

i=1

u2
i

a2i + λ

To find sup
λ≥0

d(λ), we set d′(λ) = 0 so that

− 1 +
n∑

i=1

u2
i

a2i + λ
− λ ·

n∑
i=1

u2
i

(ai + λ)2
= 0

=⇒ 1 =
n∑

i=1

u2
i a

2
i

(a2i + λ)2

Theortically, we can find λ∗ for solving 1 =
n∑

i=1

u2
i a

2
i

(a2i + λ∗)2
and x∗

i =
uia

2
i

a2i + λ∗ . It is encouraged to

think on this problem.
◀

— End of Lecture 18 —
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